Essentials
Agents
Essentials
Agents
Understanding and working with AgenticFleet agents
Working with Agents
Creating Agents
Basic agent creation:
from agentic_fleet import Agent
# Create simple agent
agent = Agent(
name="assistant",
model="gpt-4"
)
# Create agent with configuration
from agentic_fleet import AgentConfig
config = AgentConfig(
name="researcher",
model="gpt-4",
temperature=0.7,
max_tokens=2000,
tools=["web_search", "file_reader"]
)
agent = Agent(config)
Agent Types
Conversational Agent
from agentic_fleet.agents import ChatAgent
agent = ChatAgent(
name="chat_assistant",
personality="helpful and friendly",
context_window=10
)
# Chat with agent
response = await agent.chat(
"Tell me about AgenticFleet"
)
Task Agent
from agentic_fleet.agents import TaskAgent
agent = TaskAgent(
name="task_executor",
tools=["file_reader", "code_executor"]
)
# Execute task
result = await agent.execute_task(
"Analyze this Python file"
)
Research Agent
from agentic_fleet.agents import ResearchAgent
agent = ResearchAgent(
name="researcher",
search_depth=2,
max_sources=5
)
# Conduct research
findings = await agent.research(
"Latest developments in AI"
)
Agent Memory
from agentic_fleet.memory import Memory
# Create memory
memory = Memory(
storage_type="redis",
ttl=3600
)
# Create agent with memory
agent = Agent(
name="assistant",
memory=memory
)
# Store information
await agent.remember(
key="user_preference",
value="prefers detailed explanations"
)
# Recall information
preference = await agent.recall(
"user_preference"
)
Agent Tools
from agentic_fleet.tools import WebSearch, FileReader
# Add tools to agent
agent.add_tools([
WebSearch(),
FileReader()
])
# Use tool
result = await agent.use_tool(
"web_search",
query="AgenticFleet documentation"
)
Agent Communication
Direct Communication
# Send message
response = await agent.send(
"Hello, can you help me?"
)
# Structured communication
response = await agent.communicate(
intent="greeting",
content="Hello",
context={"user": "John"}
)
Multi-Agent Communication
from agentic_fleet.agents import AgentGroup
# Create agent group
group = AgentGroup([
Agent(name="researcher"),
Agent(name="writer")
])
# Group communication
result = await group.collaborate(
task="Write a research paper"
)
Agent State Management
# Save agent state
state = await agent.save_state()
# Load agent state
new_agent = Agent.load_state(state)
# Reset agent
await agent.reset()
Agent Monitoring
from agentic_fleet.monitoring import AgentMonitor
monitor = AgentMonitor(agent)
# Track performance
await monitor.track_performance()
# Get metrics
metrics = await monitor.get_metrics()
Error Handling
from agentic_fleet.exceptions import AgentError
try:
response = await agent.process(
"complex task"
)
except AgentError as e:
print(f"Agent error: {e}")
Best Practices
-
Initialization
# Initialize with clear purpose agent = Agent( name="specific_purpose", description="Clear description" )
-
Memory Management
# Clear memory when needed await agent.clear_memory()
-
Resource Management
# Use context manager async with agent: await agent.process_task()
-
Error Recovery
# Implement retry logic from agentic_fleet.utils import retry @retry(max_attempts=3) async def safe_process(): await agent.process_task()
Advanced Features
Custom Behaviors
from agentic_fleet.behaviors import Behavior
class CustomBehavior(Behavior):
async def apply(self, agent):
# Implement behavior
pass
agent.add_behavior(CustomBehavior())
Learning Capabilities
from agentic_fleet.learning import Learning
learning = Learning(
strategy="reinforcement",
model="gpt-4"
)
agent.enable_learning(learning)
Performance Optimization
from agentic_fleet.optimization import optimize_agent
optimized_agent = await optimize_agent(
agent,
metric="response_time"
)
Deployment
from agentic_fleet.deployment import deploy_agent
# Deploy agent
deployment = await deploy_agent(
agent,
platform="kubernetes",
replicas=3
)
# Scale deployment
await deployment.scale(replicas=5)
On this page
- Working with Agents
- Creating Agents
- Agent Types
- Conversational Agent
- Task Agent
- Research Agent
- Agent Memory
- Agent Tools
- Agent Communication
- Direct Communication
- Multi-Agent Communication
- Agent State Management
- Agent Monitoring
- Error Handling
- Best Practices
- Advanced Features
- Custom Behaviors
- Learning Capabilities
- Performance Optimization
- Deployment