Deployment
Advanced Azure Features
Deployment
Advanced Azure Features
Advanced Azure deployment and integration features for AgenticFleet
Advanced Azure Features
Advanced deployment and integration features for AgenticFleet on Azure.
Azure Service Bus Integration
Message Queue Setup
from agentic_fleet.integrations.azure import ServiceBusQueue
queue = ServiceBusQueue(
connection_string="your-connection-string",
queue_name="fleet-tasks"
)
# Send message
await queue.send_message({
"type": "code_review",
"content": "Review PR #123"
})
# Receive message
@queue.message_handler("fleet-tasks")
async def handle_task(message):
task_type = message.body["type"]
await fleet.process_task(task_type)
Topic/Subscription Pattern
from agentic_fleet.integrations.azure import ServiceBusTopic
topic = ServiceBusTopic(
connection_string="your-connection-string",
topic_name="fleet-events"
)
# Publish event
await topic.publish_event({
"event": "code_generated",
"fleet_id": "fleet_123"
})
# Subscribe to events
@topic.subscription_handler("code-events")
async def handle_code_event(event):
if event.body["event"] == "code_generated":
await process_code(event.body)
Azure Event Grid Integration
Custom Events
from agentic_fleet.integrations.azure import EventGrid
event_grid = EventGrid(
topic_endpoint="your-topic-endpoint",
access_key="your-access-key"
)
# Publish custom event
await event_grid.publish_event(
event_type="FleetEvent",
subject="fleet/status-change",
data={
"fleet_id": "fleet_123",
"status": "active"
}
)
# Event handler
@event_grid.event_handler
async def handle_fleet_event(event):
if event.event_type == "FleetEvent":
await update_fleet_status(event.data)
Azure Cognitive Services Integration
Language Understanding
from agentic_fleet.integrations.azure import LanguageService
language = LanguageService(
endpoint="your-endpoint",
key="your-key"
)
# Analyze text
analysis = await language.analyze_text(
text="Create a new API endpoint",
features=["entities", "sentiment"]
)
# Custom task routing
intent = await language.detect_intent(
text="Review this code for security issues"
)
await fleet.route_task(intent)
Azure DevOps Integration
Pipeline Integration
# azure-pipelines.yml
trigger:
- main
pool:
vmImage: 'ubuntu-latest'
variables:
- group: fleet-variables
stages:
- stage: Build
jobs:
- job: BuildAndTest
steps:
- task: UsePythonVersion@0
inputs:
versionSpec: '3.11'
- script: |
python -m pip install --upgrade pip
pip install -r requirements.txt
displayName: 'Install dependencies'
- script: |
pytest tests/
displayName: 'Run tests'
- stage: Deploy
jobs:
- job: DeployToAKS
steps:
- task: AzureCLI@2
inputs:
azureSubscription: 'Azure subscription'
scriptType: 'bash'
scriptLocation: 'inlineScript'
inlineScript: |
az aks get-credentials --resource-group $(resourceGroup) --name $(clusterName)
kubectl apply -f k8s/
Work Item Integration
from agentic_fleet.integrations.azure import DevOpsClient
devops = DevOpsClient(
organization="your-org",
project="your-project",
pat="your-pat"
)
# Create work item
work_item = await devops.create_work_item(
type="Task",
title="Review generated code",
description="Code review needed for PR #123",
tags=["fleet", "code-review"]
)
# Update work item
await devops.update_work_item(
id=work_item.id,
status="In Progress",
comment="Code review in progress"
)
Azure API Management
API Configuration
# api-management.yaml
apiVersion: apimanagement.azure.com/v1alpha1
kind: APIManagement
metadata:
name: fleet-api
spec:
location: eastus
sku:
name: Developer
capacity: 1
publisher:
name: AgenticFleet
email: [email protected]
apis:
- name: fleet-api
displayName: Fleet Management API
protocols:
- https
path: /v1
format: openapi
value: ./openapi.yaml
Policy Configuration
<policies>
<inbound>
<base />
<rate-limit calls="100" renewal-period="60" />
<validate-jwt header-name="Authorization" failed-validation-httpcode="401">
<openid-config url="https://login.microsoftonline.com/common/.well-known/openid-configuration" />
</validate-jwt>
</inbound>
</policies>
Azure Front Door Integration
Configuration
{
"frontDoor": {
"name": "fleet-frontend",
"routingRules": [
{
"name": "api-rule",
"acceptedProtocols": ["Https"],
"patternsToMatch": ["/api/*"],
"backendPool": {
"name": "fleet-backend",
"backends": [
{
"address": "fleet-api.azurewebsites.net",
"httpPort": 80,
"httpsPort": 443,
"priority": 1,
"weight": 100
}
]
}
}
]
}
}
Azure Backup and DR
Backup Configuration
from agentic_fleet.integrations.azure import BackupManager
backup = BackupManager(
storage_account="your-account",
container="backups"
)
# Create backup
backup_id = await backup.create_backup(
fleet_id="fleet_123",
include_memory=True
)
# Restore from backup
await backup.restore_backup(
backup_id=backup_id,
target_fleet="fleet_124"
)
Disaster Recovery
from agentic_fleet.integrations.azure import DisasterRecovery
dr = DisasterRecovery(
primary_region="eastus",
secondary_region="westus"
)
# Configure failover
await dr.configure_failover(
fleet_id="fleet_123",
mode="active-passive",
auto_failover=True
)
# Manual failover
await dr.initiate_failover(
fleet_id="fleet_123",
target_region="westus"
)
Performance Optimization
Azure CDN Integration
from agentic_fleet.integrations.azure import CDNManager
cdn = CDNManager(
profile_name="fleet-cdn",
endpoint_name="fleet-api"
)
# Configure caching
await cdn.configure_caching(
rules=[
{
"path": "/api/static/*",
"duration": "1d"
},
{
"path": "/api/data/*",
"duration": "1h"
}
]
)
Auto-scaling Configuration
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: fleet-autoscaler
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: agentic-fleet
minReplicas: 2
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
Monitoring and Analytics
Custom Metrics
from agentic_fleet.integrations.azure import MetricsCollector
metrics = MetricsCollector(
namespace="fleet-metrics"
)
# Track custom metrics
await metrics.track_metric(
name="fleet_response_time",
value=0.5,
dimensions={
"fleet_id": "fleet_123",
"agent_id": "agent_456"
}
)
# Create dashboard
await metrics.create_dashboard(
name="Fleet Performance",
metrics=[
"fleet_response_time",
"agent_memory_usage",
"message_count"
]
)
On this page
- Advanced Azure Features
- Azure Service Bus Integration
- Message Queue Setup
- Topic/Subscription Pattern
- Azure Event Grid Integration
- Custom Events
- Azure Cognitive Services Integration
- Language Understanding
- Azure DevOps Integration
- Pipeline Integration
- Work Item Integration
- Azure API Management
- API Configuration
- Policy Configuration
- Azure Front Door Integration
- Configuration
- Azure Backup and DR
- Backup Configuration
- Disaster Recovery
- Performance Optimization
- Azure CDN Integration
- Auto-scaling Configuration
- Monitoring and Analytics
- Custom Metrics